

				Su	bject	t Coo	le: K	COE	2075
Roll No:									

B.TECH (SEM VII) THEORY EXAMINATION 2021-22 **OPERATIONS RESEARCH**

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief. $2 \times 10 = 20$

Printed Page: 1 of 3

- What are slack and surplus variables? a.
- Explain basic feasible solution of LPP. b.
- Define unbalanced assignment problem. c.
- Discuss the objective of transportation problems. d.
- What is PERT? e.
- f. What are the rules for drawing the network diagram?
- Define saddle point and optimal strategy. g.
- What are various customer's behaviors? h.
- Write down different types of costs on which EOQ depends. i.
- Distinguish between deterministic and stochastic inventory models. į.

SECTION B

2. Attempt any three of the following: $10 \times 3 = 30$

- Classify and explain different models used in OR Solve the following problem by using graphical method:

Minimize Z = 2X1 + 3X2

Subjected to $X1 + 2X2 \ge 40$, $2X1 + X2 \ge 50$, X1, $X2 \ge 0$

Show that transportation is a special type of LPP. Use least cost method to find b. initial basic feasible Solution of the given problem.

Jen	X	D1	D2	D3	D4	Supply
1090	S1	19	30	50	10	7
Mille	S2	70	30	40	60	9
	S3	40	8	70	20	18
10	Demand	5	8	7	14	

- What do you mean by network analysis? What is its significance? Also c. distinguish between the following:
 - i. CPM and PERT
 - ii. Critical and Dummy activities
- For what type of business problem game theory is useful? Explain. Solve the d. following game graphically and find out the optimal strategies for both of the players.

		Player B						
		1	2	3	4			
	1	4	-2	3	-1			
Player A	2	-1	2	0	1			
	3	-2	1	-2	0			

What are the types of inventory? Why they are maintained. Explain the various e. costs related to inventory. What are the economic parameters of inventory?

Roll No: Subject Code: KOE075

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

Printed Page: 2 of 3

(a) Solve using Simplex method the following problem:

Maximize Z = 3x + 2y

subject to: $2x + y \le 18$; $2x + 3y \le 42$; $3x + y \le 24$; $x \ge 0$, $y \ge 0$

(b) Explain the phenomenon of infeasibility in an LP problem. What are the indicators of such a phenomenon? Write the dual of the given primal problem:

Maximize: Z = a + 2b + 3c

s.t. $4a + 2b + c \le 25$; $2a + 3b - c \ge 20$; $a + 2b + 3c \le 15$; b + 2c = 10 and $a, b, c \ge 0$

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Applying MODI method, determine the optimal solution of the following transportation problem.

1	1						
			1	2	3	4	Capacity
		1	100	120	90	60	700
		2 3	70	30	70	70	600
		3	60	60	90	110	
					V		
					Δ		
				1 .			
			_	12			
		Colli					
	200						
	de		,				
	100						
10	Wr.						
<u>Gr</u>	unio de d						